
Online Bagging and Boosting
Nikunj C. Oza

Intelligent Systems Division
NASA Ames Research Center

Mail Stop 269-3
Moffett Field, CA, USA

oza@email.arc.nasa.gov

Abstract - Bagging and boosting are two of the most
well-known ensemble learning methods due to their
theoretical performance guarantees and strong
experimental results. However, these algorithms have been
used mainly in batch mode, i.e., they require the entire
training set to be available at once and, in some cases,
require random access to the data. In this paper, we
present oniine versions of bagging and boosting that
require only one pass through the training data. We build
on previously presented work by presenting some
theoretical results. We also compare the online and batch
algorithms experimentally in terms of accuracy and
running time.

Keywords: Bagging, boosting, ensemble learning, online
learning.

1 Introduction
Traditional supervised learning algorithms generate a

single model such as a Na'ive Bayes classifier or multilayer
perceptron (MLP) and use it to classify examples.'
Ensemble learning algorithms combine the predictions of
multiple base models, each of which is lea ied usiiig a
traditional algorithm. Bagging [3] and Boosting [4] are
well-known ensemble learning algorithms that have been
shown to be very effective in improving generalization
performance compared to the individual base models.
Theoretical analysis of boosting's performance supports
these results [4].

In previous work [1][2], we developed onZine versions
of bagging and boosting. Online learning algorithms
process each training example once "on arrival'' without
the need for storage and reprocessing, and maintain a
current model that reflects all the training examples seen SO

far. Such algorithms have advantages over typical batch
algorithms in situations where data arrive continuously.
They are also usem with very large data sets on secondary
storage, for which the multiple passes through the training
set required by most batch algorithms are prohibitively
expensive. In Sections 2 and 3, we describe our online
bagging and online boosting algorithms, respectively. In
particular, we describe how we mirror the methods that the
batch bagging and boosting algorithms use to generate

1 In this paper, we only deal with the classification
problem.

distinct base
performance.

In our
preliminary

models, which are known to help ensemble

previous work, we also discussed some
theoretical results and some empirical

comparisons of the classification accuracies of our -online
algorithms and the corresponding batch algorithms on
many datasets of varying size. In Sections 2 and 3, we give
a brief description of some additionai theoretical resuits. in
Section 4, we review the experimental results in our
previous work demonstrating the performance of our online
algorithms relative to their batch counterparts. In this
paper, we expand upon these results by comparing and
studying their running times. We run our online bagging
and boosting algorithms with two different base models:
Nai've Bayes classifiers and MLPs. We use a lossless
online learning algorithm for Na'ive Bayes classifiers. For a
given training set, a lossless online learning algorithm
returns a model identical to that returned by the
corresponding batch algorithm. For MLPs, we are forced to
use a lossy online learning algorithm. In particular, we do
not allow the MLP's backpropagation algorithm to cycle
through the training set in multiple epochs the way
backpropagation is normally allowed to do. Overall, our
online bagging and boosting algorithms perform
comparably to their batch counterparts in terms of
classification accuracy when using Na'ive Bayes base
models. The loss experienced by online MLPs relative to
batch MLPs leads to a significant loss for online bagging
and boosting relative to the batch versions. Online bagging
often does improve significantly upon online MLPs;
however, online boosting never performed sigificantly
better than single online MLPs. We also compare the
running times of the batch and online algorithms. If the
online base model learning algorithm is not significantly
slower than the corresponding batch algorithm, then the
bagging and online bagging algorithms do not have a large
difference in their running time in our tests. On the other
hand, our online boosting algorithm runs significantly
faster than batch boosting. For example, on our largest
dataset, batch boosting ran twice as long as online
boosting to achieve comparable classification accuracy.

2 Online Bagging
Given a training dataset T of size N , standard batch

bagging creates M base models. Each model is trained by
calling the batch learning algorithm Lb on a bootstrap
sample of size N created by drawing random samples with

replacement from the original training set. Figure 1 gives
the pseudocode for bagging.

Bagging(T,Lb > M>
For each rn E {1,2,. . ., M},

T, = Sample-With-RepIacement(T,Iq)

htn = Lb(Tm)

Return {hl,h2,. . .,h,}

Figure 1: Bagging Algorithm

Each base model's training set contains K copies of
each of the original training examples where

N - k P (K = k) = (N 1)(-Y(1 - $)
k N

which is the Binomial distribution. As N + 00, the
distribution of K tends to a Poisson(1) distribution:
P(K = k) - exp(-l)/k!. As discussed in [l] [2], we can
perform bagging online as follows: as each training
example d=(x,y) is presented to our algorithm, for each
base model, choose the example K - Poisson(1) times
and update the base model accordingly using the online
base model learning algorithm Lo (see Figure 2) . New
examples are classified the same way in online and batch
bagging-by unweighted voting of the A4 base models.

OnlineBagging(h, Lo, d)

For each base model h, E h,m E {1,2,. . . ,M} .
Set k according to Poisson(1).
Do k times

Figure 2: Online Bagging Algorithm

Online bagging is a good approximation to batch
bagging to the extent that their base model learning
algorithms produce similar models when trained with
similar distributions of training examples. In past work
[1] [5] , we proved that if the same original training set is
supplied to the two bagging algorithms, then the
distributions over the training sets supplied to the base
models in batch and online bagging converge as the size of
that original training set grows to infinity. We have also
proven that the classifiers returned by bagging and online
bagging converge to the same classifier given the same
training set as the number of models and training examples
tends to infinity under two conditions. The first is that the
base model learning algorithms return classifiers that

training examples grows. The second is that, given a fixed
training set T, the online and batch base model learning
algorithms return the same classifier for any number of
copies of T that are presented to the learning algorithm. For
example, doubling the training set by repeating every
example in T yields the same classifier as T would yield.
For example, this condition is true of decision trees and
NaYve Bayes classifiers, but is not true of MLPs, since
doubling the training set effectively doubles the number of
epochs in backpropagation training. More formal details are
presented in [5] .

3 Online Boosting
Our online boosting algorithm is designed to

correspond to the batch boosting algorithm, AdaBo0st.M 1
[4] (the pseudocode is given in Figure 3). AdaBoost
generates a sequence of base models h,, h2,. . ., h, using
weighted training sets (weighted by Dl,D2,. . . ,OM) such
that the training examples misclassified by model hm-l are
given half the total weight when generating model h, and
the correctly classi.fied examples are given the remaining
half of the weight. When the base model learning algorithm
cannot learn with weighted training sets, one can generate
samples with replacement according to D,

AdaBoost({ (xl,yl),(x 2 , y 2) 9 * * *,(x N , y N)) , L b 9 M>
Initialize D, (n) = 1 / N for all n E {1,2,. . . , N}.

For all rn E {1,2 ,..., M } ,

N

n-1

If E, 2 1/2 then set M = m - 1 and abort loop.

For all n E {1,2 ,..., N } ,

Return h,, (x) =

Figure 3: AdaBoost algorithm

Our online boosting algorithm (Figure 4) simulates
sampling with replacement using the Poisson distribution - -

converge toward the same classifier as the number of just like online bagging does. The only difference is that

when a base model misclassifies a training example, the
Poisson distribution parameter d associated with that
example is increased when presented to the next base
model; otherwise it is decreased. Just as in AdaBoost, our
algorithm gives the examples misclassified by one stage
half the total weight in the next stage; the correctly
classified examples are given the remaining half of the
weight. This is done by keeping track of the total weights
of each base model's correctly classified and misclassified
training examples (xi and a:, respectively) and using
these to update each base model's error E,,,. At this point, a
training example's weight is updated the same way as in
AdaBoost.

One area of concern is that, in AdaBoost, an
example's weight is adjusted based on the performance of a
base model on the entire training set while in online
boosting, the weight adjustment is based on the base
model's performance only on the examples seen earlier. To
see why this may be an issue, consider running AdaBoost
and online boosting on a training set of size 10000. In
AdaBoost, the first base model h, is trained on all 10000
examples before being tested on, say, the tenth training
example. In online boosting, h, is trained on only the first
ten examples before being tested on the tenth example.
Clearly, at the moment when the tenth training example is
being tested, we may expect the two 4 ' s to be very
different; therefore, h, in AdaBoost and h, in online
boosting may be presented with different weights for the
tenth training example. This may, in turn, lead to different
weights for the tenth example when generating h, in each
algorithm, and so on. Intuitively, we want online boosting
to get a good mix of training examples so that the base
models and their normalized errors in online boosting
quickly converge to what they are in AdaBoost. The more
rapidly this convergence occurs, the more similar the
training examples' weight adjustments will be and the more
similar their performances will be. We have proven [5] that
for Naive Bayes base models, the online and batch boosting
algorithms converge to the same ciassifier as the number of
models and training examples tends to infinity.

4 Experimental Results
In this section, we discuss results on several different

datasets, whose names and numbers of training examples,
test examples, inputs, and classes are given in Table 1. The
Soybean-Large and Census Income datasets come with
fixed training and test sets, which we use in our
experiments. For the remaining datasets, we give the
training and test set sizes that result kom using 5-fold
cross-validation. We discuss the results on some small
datasets to show that the online algorithms can often
achieve performance comparable to batch algorithms even
when given a small number of data points. We discuss
results on several larger datasets in more detail since online
algorithms are most useful for such datasets. All but three
of the datasets were drawn fiom the UCI KDD repositoq
[6]. The remaining three are synthetic datasets that were

chosen because the performance of a single Naive Bayes
classifier varies significantly across these three datasets.
These datasets allow us to compare the performances of the
online and batch ensemble algorithms on datasets of
varying difficulty.

Table 1 : The datasets used in our experiments.

Data Set

Promoters
Balance
Soybean-Large
Breast Cancer
Car
Evaluation
Chess
Mushroom
Nursery
Connect4
Synthetic-1
Synthetic-2
Synthetic-3
Census Income
Forest
Cnvertvne

Train
Set
84
500
307
559
800

1382
6499
10368
54045
80000
80000
80000
199523
464809

Test
Set
22
125
3 76
140
200

346
1625
2592
13512
20000
20000
20000
99762
1 16203

Input

57
4
35'
9
20

6
22
8
42
20
20
20
39
54

Class

2
3
19
2
2

4
2
5
3
2
2
2
2
7

4.1 Accuracy

For both bagging and boosting, we present results
using two' different base model types : Naive Bayes
classifiers and multilayer perceptrons (MLPs). Both
bagging algorithms generated 100 base models. Both
boosting algorithms were allowed to generate up to 100
base models. All the results shown are based on 10 runs of
5-fold cross validation (except on the Soybean-Large and
Census Income, where we used the supplied training and
test sets). A!! the o n h e algoiit,hms were r m five Piles fcr
every one time the batch algorithm was run, with different
random orders of the training set. This was done to account
for the effect that the order of the training examples can
have on the performance of an online learning algorithm.

Tables 2-5 show the results of online bagging and
boosting compared to their batch counterparts and single
base models using Naive Bayes classifiers and MLPs. The
online MLP was trained by using backpropagation to
update the MLP with each training example ten times upon
arrival; however, the algorithm only ran through the entire
training set once in the order in which it was presented. The
batch MLP was trained by using backpropagation to update
the MLP in ten epochs (ten cycles through the entire
training set). All comparisons between algorithms were
made using a paired t-test (a=0.05).

Table 2 shows the results of running bagging with
Naive Bayes classifiers. Entries in boldfacehtalics indicate
that the ensemble algorithm performed significantly
bettedworse than a single Naive Bayes classifier. The
bagging algorithms performed comparably to each other and
mostly performed comparably to the batch Naive Bayes
algorithm. This is expected due to the stability of Naive

a

4
0

Bayes classifiers [3]. That is, the NaYve Bayes classifiers in
a bagged ensemble tend to classify new examples the same
way (we obtained at least 90% agreement on all test
examples) in spite of the differences in the training sets.

Initial conditions : For all m E {1,2,. . . , M},

x; = o , q =o.
OnlineBoosting(h,L,,(x, y))

S e t d = l .

For each base model h, E h,m E {1,2,. . ., M]
Set k according to Poisson(d).
Do k times

h, = L,(hm9(AY>).
If y = h,(x)

x; - x; + A

else

end
'0 classify a new example with input x, return

Figure 4: Online Boosting Algorithm

Table 3 shows the results of running the boosting
algorithms with Naive Bayes classifiers. In the ((Online
Boosting)) column, any entry with a '+' or '-' after it
indicates that online boosting performed significantly better
or worse than batch boosting, respectively. Batch boosting
significantly outperforms online boosting in many cases--
especially the smaller datasets. However, the performances
of boosting and online boosting relative to a single Naive
Bayes classifier agree to a remarkable extent. That is, when
one of them is significantly better or worse than a single
Naive Bayes classifier, the other tends to be the same way.

Table 2: Bagging vs. Online Bagging, Naive Bayes

Dataset Naive Bagging Online

Promoters 0.8774 0.8354 0.8401
Balance 0.9075 0.9067 0.9072
Breast Cancer 0.9647 0.9665 0.9661
German Credit 0.7483 0.748 0.7483
Car Evaluation 0.8569 0.8532 0.8547
Chess 0.8757 0.8759 0.8749
Mushroom 0.9966 0.9966 0.9966
Nursery 0.903 1 0.9029 0.9027
Connect4 0.7214 0.7212 0.7216
Synthetic-1 0.4998 0.4996 0.4997
Synthetic-2 0.7800 0.7801 0.7800
Synthetic-3 0.925 1 0.925 1 0.9251
Census Income 0.7630 0.7637 0.7636
Forest Covertype 0.676 1 0.6762 0.6762

Table 3: Boosting vs. Online Boosting, Naive Bayes

Dataset Naive Boosting Online

Bayes Bagging

Bayes Boosting
Promoters 0.8774 0.8455 0.71 36-
Balance 0.9075 0.8754 0.8341-

German Credit 0.7483 0.735 0.68 79-
Car Evaluation 0.8569 0.9017 0.8967-
Chess 0.8757 0.9517 0.9476-
Mushroom 0.9966 0.9999 0.9987-
Nursery 0.903 1 0.9163 0.9118-

Synthetic-1 0.4998 0.5068 0.5007-
Synthetic-2 0.7800 0.8446 0.8376-

Breast Cancer 0.9647 0.9445 0.9573+

Connect4 0.7214 0.7197 0.7209

Synthetic-3 0.925 1 0.9680 0.9688
Census Income 0.7630 0.9365 0.9398
Forest Covertype 0.676 1 0.6753 0.6753

Table 4 shows the results of running bagging with
MLPs. The entries for bagging shown in boldfacehtalics
i n d i c a t e t h a t b a g g i n g s i g n i f i c a n t l y
outperformedhnderperformed relative to the batch MLP.
The entries for online bagging shown in boldface/italics
indicate that on l ine bagging significantly
outperformedunderperformed relative to the online MLP.
The entries for online bagging with a '-' after them indicate
times when it performed significantly worse than batch
bagging. The online MLP always performed significantly
worse than the batch MLP ; therefore, it is not surprising
that online bagging often performed significantly worse
than batch bagging. However, online bagging did
significantly outperform online MLPs most of the time.

Table 5 gives the results of running boosting with
MLPs. Entries in the online MLP and boosting co l~mn
that are given in boldfacehtalics indicate that it
significantly outperformed/underperformed relative to batch
MLPs. Entries in the online boosting column given in
boldfacehtalics indicate times when it significantly
outperformedunderperformed relative to the online MLP.

Entries with a '-' after them indicate times when
online boosting performed significantly worse than batch

boosting. Clearly, the significant loss in using an online
MLP instead of a batch MLP has rendered the online
boosting algorithm significantly worse than batch boosting.

Table 4: Bagging vs. Online Bagging, MLPs

Dataset MLP Online Bagging Online

Promoters 0.8982 0.8036 0.9036 0.7691-
Balance 0.9194 0.8965 0.9210 0.9002-
Breast 0.9527 0.9020 0.9561 0.8987-
cancer
German 0.7469 0.7062 0.7495 0.7209-
Credit

Evaluation

MLP Bagging

Car 0.9422 0.8812 0.9648 0.8877-

Chess 0.9681 0.9023 0.9827 0.9185-
Mushroom 1.0 0.9995 1.0 0.9988-
hkiis-sery 0.9829 0.9411 0.9743 0.9390-
Connect4 0.8199 0.7042 0.8399 0.7451-
Synthetic-1 0.7217 0.6514 0.7326 0.6854-
Synthetic-2 0.8564 0.8345 0.8584 0.8508-
Synthetic-3 0.9824 0.9811 0.9824 0.9824
“ensus
h o m e

Zovertvne

0.9519 0.9487 0.9533 0.9487- “

?orest 0.7573 0.6974 0.7787 0.7052-
~~~ ~ ~~ 

Table 5: Boosting vs. Online Boosting, MLPs 

Dataset MLP Online Boosting Online 

Promoters 0.8982 0.8036 0.8636 0.6155- 
MLP Boosting 

Balance 0.9194 0.8965 0.9534 0.8320- 
Breast 0.9527 0.9020 0.9540 0.8847- 
cancer 
German 0.7469 0.7062 0.7365 0.6788- 
Credit 

Evaluation 
car 0.9422 0.8812 0.9963 0.8806- 

Chess 0.9681 0.9023 0.9941 0.8954- 
Mushroom 1.0 0.9995 0.9998 0.9993- 
Nursery 0.9829 0.9411 0.9999 0.9445- 

Synthetic-1 0.7217 0.6514 0.7222 0.6344- 
Synthetic-2 0.8564 0.8345 0.8557 0.8117- 
Synthetic-3 0.9824 0.9811 0.9824 0.9583- 
Census 0.9519 0.9487 0.9486 0.9435 
h o m e  

:overtype 

COMect4 0.8199 0.7042 0.8252 0.6807- 

Forest 0.7573 0.6974 0.7684 0.6329- 

4.2 Running Time 

In this section, we report and analyze the running 
times of the batch and online algorithms that we 
experimented with. There are several factors that affect the 
difference between the running times of an online learning 
algorithm and its batch counterpart. Online learning 
algorithms’ main advantage over batch learning algorithms 

is the ability to incrementally update their models with new 
training examples---batch algorithms often have to throw 
away the previously learned model and learn a new model 
after adding the new examples to the training set. This is 
clearly very wasteful computationally and is impossible 
when there are more data than can be stored. Additionally, 
batch bagging must cycle through the dataset at least MT 
times, where Mis the number of base models and T is the 
number of times the base model learning algorithm must 
cycle through the training set to construct one model. 
Therefore, each training example is examined MT times. On 
the other hand, online bagging only needs to sweep through 
the training set once, which means that each training 
example is examined only M times (once to update each 
base model’s parameters). Online algorithms do not require 
storing the entire training set. However, for a fixed training 
set (i.e., one to which new training examples are not 
continually added), batch algorithms sometimes run faster 
than the corresponding online algorithms. This is because 
batch algorithms can often set their model parameters once 
and for all by examining the entire training set at once 
while online algorithms have to update their parameters 
once per training example. 

Table 6: Running times for Naive Bayes and Ensembles. 

Dataset Naive 
Bayes 

Promoters 0.02 
Balance 0 
Breast 0.02 
cancer 
G e m  0 
Credit 
Car 0.04 
Evaluation 
Chess 0.42 
Mushroom 0.38 
Nursery 0.86 
Connect4 6.92 
Synthetic-1 7.48 
Synthetic-2 5.94 
Synthetic-3 4.58 
Census 56.6 
Income 
Forest 106 

Bag Online 
Bag 

0 0.22 
0.1 0.1 
0.14 0.32 

0.14 0.38 

0.34 0.44 

1.02 1.72 
2.14 3:28 
1.82 3.74 
33.98 42.04 
45.6 64.16 
44.78 74.84 
44.98 56.2 
131.8 157.4 

371.8 520.2 

Boost Online 

0.44 0.72 
0.26 0.06 
1.32 0.66 

Boost 

0.7 1.5 

0.88 1.72 

9.42 7.45 
114 11.08 
31.4 20.74 
647 465 
1352 394 
5333 343 
3762 284 
25605 1200 

67611 15638 
Covertype 

The comparison between batch and online boosting 
has the additional factor of the number of base models. 
Batch boosting, when called with the upper limit of M base 
models, can choose to generate fewer models---recall that if 
a model’s error is greater than 0.5, then boosting will 
discard that model and return the ensemble generated so fix. 
Online boosting does not have this luxury because it does 
not know what the final error rates will be for each base 
model. This difference can lead to lower training times for 
batch boosting. However, batch boosting needs to cycle 
through the training set M(T+I) times---each of the A4 base 
models requires T cycles through the training set to learn 
the model and one cycle to calculate the error on the 



training set. Online boosting only requires one sweep 
through the training set. 

Table 7: Running times for MLPs and Bagging. 

Dataset MLP Online Bag Online 

Promoters 2.58 2.34 442.7 334.6 
Balance 0.12 0.14 12.48 11.7 
BreastCancer 0.12 0.18 8.14 6.58 
GermanCredlt 0.72 0.68 73.64 63.5 
Car Evaluation 0.6 0.46 36.86 36.82 
Chess 1.72 1.92 166.8 159.8 
Mushroom 7.68 6.64 828.4 657.5 
Nursery 9.14 9.22 1119 1005 
Connect4 2338 1134 156009 105036 
Synthetic- 1 142.0 149.3 15450 16056 
Synthetic-2 301 124.2 24447 13328 
Synthetic-3 203.8 117.5 17673 12469 
Census Income 4221 1406 201489 131135 
Forest Covertype 2071 805.0 126519 73902 

MLP Bag 

Table 8: Running times for MLP and Boosting. 

Dataset MLP Online Boost Online 
MLP Boost 

Promoters 2.58 2.34 260.9 83.18 
Balance 0.12 0.14 1.96 4.18 
Breast 0.12 0.18 2.56 2.28 
Cancer 
Gellllan 0.72 0.68 11.86 23.76 
Credit 
car 0.6 0.46 44.04 9.2 
Evaluation 
Chess 1.72 1.92 266.7 32.42 
Mushroom 7.68 6.64 91.72 53.28 
Nursery 9.14 9.22 1537 160.2 
Connect4 2338 1134 26461 58277 
Synthetic-1 142.0 149.3 6431 8806 
Synthetic-2 301 124.2 10414 5644 
Synthetic3 203.8 117.5 9262 1652 
Census 4221 1406 89608 52362 
h o m e  
Forest 2071 805.0 141812 74663 
:overtype 

Table 6 shows the running times for Naive Bayes as 
vel1 as all the ensemble learning algorithms using Naive 
3ayes classifiers as base models. The running time for 
anline bagging is generally somewhat greater than for batch 
bagging. The total number of times each training example 
is examined is the same for both batch and online bagging 
with Naive Bayes classifiers. However, online bagging 
requires a greater number of procedure calls to the learning 
algorithm (MT as opposed to M), which may explain the 
running time difference. On the other hand, online boosting 
has a clear running time advantage over batch boosting. 
Online boosting’s fewer sweeps through the dataset clearly 
outweigh any reduction in the number of base models 
returned by batch boosting. Tables 7-8 give the running 
times for MLPs and the batch and online ensemble 

algorithms. This time, both online bagging and online 
boosting are faster than their batch counterparts. The batch 
algorithms are slowed down because each MLP requires ten 
cycles through the dataset. 

5 Conclusions 
In this paper, we discussed online versions of 

bagging and boosting and gave both theoretical and 
experimental evidence that they can perform comparably to 
their batch counterparts while running much faster. In this 
paper, we experimented only with batch datasets, i.e., one 
is not concerned with concept drift. Online algorithms are 
useful for batch datasets that cannot be loaded into memory 
in their entirety. We plan to experiment with online 
domains---domains where data arrive continually and where 
a prediction must be generated for each data point upon 
arrival. In these situations, the learner may be given 
immediate feedback (such as a calendar assistant which may 
suggest a meeting time which the user can either select or 
change) or may obtain feedback periodically. The time- 
varying nature of such datasets make them more difficult to 
deal with but more needy of online ensemble learning 
algorithms. 

References 
[ l ]  Nikunj C. Oza and Stuart Russell, “Online Bagging 
and Boosting,” in Artificial Intelligence and Statistics 
2001, Key West, FL, USA, pp. 105-1 12. January 2001. 

[2] Nikunj C. Oza and Stuart Russell, ‘‘Experimental 
Comparisons of Online and Batch Versions of Bagging 
and Boosting,” The Seventh ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
San Francisco, CA, USA, pp. 359-364, August 2001. 

[ 31 Leo Breiman, “Bagging Predictors,” Machine 
Learning, Vol. 24, No. 2, pp. 123-140, 1996. 

[4]  Yoav Freund and Robert Schapire, “A Decision- 
Theoretic Generalization of On-line Learning and an 
Application to Boosting,” Journal of Cornpurer System 
Sciences, Vol. 5 5 ,  No. 1, pp. 119-139, 1997. 

[5] Nikunj C. Oza, “Online Ensemble Learning,” Ph.D. 
thesis, Department of Electrical Engineering and Computer 
Science, University of California, Berkeley, 200 1. 

[ 6 ]  Stephen D. Bay, “The UCI KDD Archive,” 
http://kdd,ics.uci.edu, Department of Information and 
Computer Sciences, University of California, Irvine. 1999. 


